Login / Signup

Knockdown of KIF15 suppresses proliferation of prostate cancer cells and induces apoptosis through PI3K/Akt signaling pathway.

Hai BiXiaofei HouQiyang ShenZenan LiuXuehua ZhuLulin MaJian Lu
Published in: Cell death discovery (2023)
Prostate cancer is one of the most common malignancies in men, which has been considered a public health threat. KIF15 is a kind of driver protein, and its abnormal expression is closely related to the occurrence and development of malignant tumors. The purpose of the study was to explore the significance and role of KIF15 in prostate cancer and to show some potential value for prostate cancer. Immunohistochemistry analysis showed that KIF15 was highly expressed in prostate cancer tissues, which was also positively correlated with T Infiltrate. The loss-of-function and gain-of-function assays based on prostate cancer cells indicated that the change in KIF15 expression could significantly affect cell proliferation, tumorigenesis, migration, and cell apoptosis. The inhibition of prostate cancer development by KIF15 knockdown was also assured in vivo. The Human Apoptosis Antibody Array showed that CD40L, cytoC, DR6, and p21 were up-regulated upon KIF15 knockdown, while IGF-I and Survivin were down-regulated. Moreover, the involvement of the PI3K/Akt pathway in the KIF15-mediated regulation of prostate cancer was preliminarily proved. In summary, KIF15 was identified to play an important role in the development or biological progress of prostate cancer and is considered to possess the potential to be used as a therapeutic target.
Keyphrases