Login / Signup

Interfacial Engineering of Pickering Emulsion Co-Stabilized by Zein Nanoparticles and Tween 20: Effects of the Particle Size on the Interfacial Concentration of Gallic Acid and the Oxidative Stability.

Zijun ZhaoWenbo WangJie XiaoYun-Jiao ChenYong Cao
Published in: Nanomaterials (Basel, Switzerland) (2020)
Lipid oxidation is still one of the major food-safety issues associated with the emulsion-based food systems. Engineering the interfacial region is an effective way to improve the oxidative stability of emulsion. Herein, a novel Pickering emulsion with strong oxidative stability was prepared by using zein nanoparticles and Tween 20 as stabilizers (ZPE). The modulation effects of the particle size on the distribution of gallic acid (GA) and the oxidative stability of ZPE were investigated. In the absence of GA, Pickering emulsions stabilized with different sizes of zein nanoparticles showed similar oxidative stability, and the physical barrier effect took the dominant role in retarding lipid oxidation. Moreover, in the presence of GA, ZPE stabilized by zein nanoparticles with the averaged particle size of 130 nm performed stronger oxidation than those stabilized by zein nanoparticles of 70 and 220 nm. Our study revealed that the interfacial concentration of GA (GAI) was tuned by zein nanoparticles due to the interaction between them, but the difference in the binding affinity between GA and zein nanoparticles was not the dominant factor regulating the (GAI). It was the interfacial content of zein nanoparticles (Γ), which was affected by the particle size, modulated the (GAI) and further dominated the oxidative stability of ZPEs. The present study suggested that the potential of thickening the interfacial layer to prevent lipid oxidation was limited, increasing the interfacial concentration of antioxidant by interfacial engineering offered a more efficient alternative.
Keyphrases