Login / Signup

Shedding Light on the Circadian Clock of the Threespine Stickleback.

Marie-Pier BrochuNadia Aubin-Horth
Published in: The Journal of experimental biology (2021)
The circadian clock is an internal timekeeping system shared by most organisms, and knowledge about its functional importance and evolution in natural environments is still needed. Here, we investigated the circadian clock of wild-caught threespine sticklebacks (Gasterosteus aculeatus) at the behavioural and molecular levels. While their behaviour, ecology, and evolution are well studied, information on their circadian rhythms are scarce. We quantified the daily locomotor activity rhythm under a light-dark cycle (LD) and under constant darkness (DD). Under LD, all fish exhibited significant daily rhythmicity, while under DD, only 18% of individuals remained rhythmic. This interindividual variation suggests that the circadian clock controls activity only in certain individuals. Moreover, under LD, some fish were almost exclusively nocturnal, while others were active around the clock. Furthermore, the most nocturnal fish were also the least active. These results suggest that light masks activity (i.e. suppresses activity without entraining the internal clock) more strongly in some individuals than others. Finally, we quantified the expression of five clock genes in the brain of sticklebacks under DD using qPCR. We did not detect circadian rhythmicity, which could either indicate that the clock molecular oscillator is highly light-dependent, or that there was an oscillation but that we were unable to detect it. Overall, our study suggests that a strong circadian control on behavioural rhythms may not necessarily be advantageous in a natural population of sticklebacks and that the daily phase of activity varies greatly between individuals because of a differential masking effect of light.
Keyphrases
  • healthcare
  • blood pressure
  • poor prognosis
  • spinal cord injury
  • genome wide
  • gene expression
  • dna methylation
  • white matter
  • social media
  • cerebral ischemia