Login / Signup

Jasmonic Acid-Induced β-Cyclocitral Confers Resistance to Bacterial Blight and Negatively Affects Abscisic Acid Biosynthesis in Rice.

Shiduku TaniguchiAya TakedaMasaki KiryuKenji Gomi
Published in: International journal of molecular sciences (2023)
Jasmonic acid (JA) regulates the production of several plant volatiles that are involved in plant defense mechanisms. In this study, we report that the JA-responsive volatile apocarotenoid, β-cyclocitral (β-cyc), negatively affects abscisic acid (ABA) biosynthesis and induces a defense response against Xanthomonas oryzae pv. oryzae ( Xoo ), which causes bacterial blight in rice ( Oryza sativa L.). JA-induced accumulation of β-cyc was regulated by OsJAZ8, a repressor of JA signaling in rice. Treatment with β-cyc induced resistance against Xoo and upregulated the expression of defense-related genes in rice. Conversely, the expression of ABA-responsive genes, including ABA-biosynthesis genes, was downregulated by JA and β-cyc treatment, resulting in a decrease in ABA levels in rice. β-cyc did not inhibit the ABA-dependent interactions between OsPYL/RCAR5 and OsPP2C49 in yeast cells. Furthermore, we revealed that JA-responsive rice carotenoid cleavage dioxygenase 4b (OsCCD4b) was localized in the chloroplast and produced β-cyc both in vitro and in planta. These results suggest that β-cyc plays an important role in the JA-mediated resistance against Xoo in rice.
Keyphrases