Login / Signup

Basic evaluation of the CRISPR/Cas system stability for application to paper-based analytical devices.

Yohei TanifujiHikaru SuzukiGuodong TongYuki TokuraDaniel Citterio
Published in: Analytical methods : advancing methods and applications (2024)
Despite the promising features of the CRISPR/Cas system for application to point-of-care nucleic acid tests, there are only a few reports on its integration into paper-based analytical devices (PADs) for the purpose of assay simplification. In most cases, paper platforms have only been used for the final signal readout in an assay otherwise performed in a test tube. Therefore, there is very limited information on the suitability of the CRISPR/Cas system for on-device reagent storage. To fill this gap, the current work primarily investigated the influence of various factors, including the type of paper, reagent drying method, effect of stabilizers, and storage condition on the storage stability of reagents necessary for CRISPR-based assays on paper substrates, by comparing the fluorescence signal emitted by the trans -cleavage of the dsDNA-activated Cas12a complex. The results obtained in the form of fluorescence signals emitted after trans -cleavage of a ssDNA probe through a dsDNA-activated Cas12a complex on paper substrates showed that CRISPR-related reagents spontaneously dried at room temperature on BSA blocked paper retained over 70% of their initial activity when stored at -20 °C for 28 days, independent of the type of paper substrates, which was improved by the addition of sucrose as a stabilizer. In addition, reagents dried on paper substrates under the optimized conditions exhibited stronger heat tolerance at temperatures above 65 °C compared to their corresponding solutions. This work is expected to contribute to the future development of fully integrated PADs relying on CRISPR/Cas systems for point-of-care applications requiring no additional reagent handling.
Keyphrases