Login / Signup

Targeting Senescent Alveolar Epithelial Cells Using Engineered Mesenchymal Stem Cell-Derived Extracellular Vesicles To Treat Pulmonary Fibrosis.

Yaoying LongBianlei YangQian LeiFei GaoLi ChenWenlan ChenSiyi ChenWenxiang RenYulin CaoLiuyue XuDi WuJiao QuHe LiYali YuAnyuan ZhangShan WangWeiqun ChenHongxiang WangTing ChenZhichao ChenQiubai Li
Published in: ACS nano (2024)
Type 2 alveolar epithelial cell (AEC2) senescence is crucial to the pathogenesis of pulmonary fibrosis (PF). The nicotinamide adenine dinucleotide (NAD + )-consuming enzyme cluster of differentiation 38 (CD38) is a marker of senescent cells and is highly expressed in AEC2s of patients with PF, thus rendering it a potential treatment target. Umbilical cord mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) have emerged as a cell-free treatment with clinical application prospects in antiaging and antifibrosis treatments. Herein, we constructed CD38 antigen receptor membrane-modified MSC-EVs (CD38-ARM-MSC-EVs) by transfecting MSCs with a lentivirus loaded with a CD38 antigen receptor-CD8 transmembrane fragment fusion plasmid to target AEC2s and alleviate PF. Compared with MSC-EVs, the CD38-ARM-MSC-EVs engineered in this study showed a higher expression of the CD38 antigen receptor and antifibrotic miRNAs and targeted senescent AEC2s cells highly expressing CD38 in vitro and in naturally aged mouse models after intraperitoneal administration. CD38-ARM-MSC-EVs effectively restored the NAD + levels, reversed the epithelial-mesenchymal transition phenotype, and rejuvenated senescent A549 cells in vitro, thereby mitigating multiple age-associated phenotypes and alleviating PF in aged mice. Thus, this study provides a technology to engineer MSC-EVs and support our CD38-ARM-MSC-EVs to be developed as promising agents with high clinical potential against PF.
Keyphrases