Large clinical trials and real-world studies have demonstrated that the beneficial effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on renal outcomes regardless of the presence of diabetes. However, the mechanism remains obscure. Here, we analyze the anti-fibrotic and anti-inflammatory effects of dapagliflozin, a SGLT2 inhibitor, on renal alternations using the ischemia/reperfusion-induced fibrosis model. Transcriptome and metabolome analysis showed that the accumulation of tricarboxylic acid (TCA) cycle metabolites and upregulation of inflammation in fibrosis renal cortical tissue were mitigated by dapagliflozin treatment. Moreover, dapagliflozin markedly relieved the activation of mammalian target of rapamycin and hypoxia inducible factor-1α signaling and restored tubular cell-preferred fatty acid oxidation. Notably, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation was strikingly blocked by dapagliflozin. We further demonstrated that the immunomodulatory metabolite itaconate derived from the TCA cycle was significantly boosted as a result of decreased isocitrate dehydrogenase 2 and increased immune-responsive gene 1 and mitochondrial citrate carrier in dapagliflozin-treated mice, which contributed to the inhibitory effect of dapagliflozin on NLRP3 inflammasome activation. Furthermore, administration of cell-permeable itaconate surrogate prevented activation of NLRP3 inflammasome and protected kidney against fibrosis development. Our results identify a novel mechanism coupling metabolism and inflammation for kidney benefits of SGLT2 inhibition in progressive chronic kidney disease.
Keyphrases
- nlrp inflammasome
- oxidative stress
- single cell
- chronic kidney disease
- clinical trial
- high glucose
- fatty acid
- anti inflammatory
- type diabetes
- cell therapy
- cardiovascular disease
- genome wide
- gene expression
- stem cells
- multiple sclerosis
- rna seq
- liver fibrosis
- cell proliferation
- diabetic rats
- systemic sclerosis
- drug delivery
- nitric oxide
- endothelial cells
- binding protein
- signaling pathway
- newly diagnosed
- peritoneal dialysis
- bone marrow
- weight loss
- ionic liquid
- study protocol