Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare.
Francisco J JaimeAntonio Muñoz-GallegoFrancisco Rodríguez-GómezAntonio Jerez-CaleroPublished in: Sensors (Basel, Switzerland) (2023)
Biomedical Microelectromechanical Systems (BioMEMS) serve as a crucial catalyst in enhancing IoT communication security and safeguarding smart healthcare systems. Situated at the nexus of advanced technology and healthcare, BioMEMS are instrumental in pioneering personalized diagnostics, monitoring, and therapeutic applications. Nonetheless, this integration brings forth a complex array of security and privacy challenges intrinsic to IoT communications within smart healthcare ecosystems, demanding comprehensive scrutiny. In this manuscript, we embark on an extensive analysis of the intricate security terrain associated with IoT communications in the realm of BioMEMS, addressing a spectrum of vulnerabilities that spans cyber threats, data manipulation, and interception of communications. The integration of real-world case studies serves to illuminate the direct repercussions of security breaches within smart healthcare systems, highlighting the imperative to safeguard both patient safety and the integrity of medical data. We delve into a suite of security solutions, encompassing rigorous authentication processes, data encryption, designs resistant to attacks, and continuous monitoring mechanisms, all tailored to fortify BioMEMS in the face of ever-evolving threats within smart healthcare environments. Furthermore, the paper underscores the vital role of ethical and regulatory considerations, emphasizing the need to uphold patient autonomy, ensure the confidentiality of data, and maintain equitable access to healthcare in the context of IoT communication security. Looking forward, we explore the impending landscape of BioMEMS security as it intertwines with emerging technologies such as AI-driven diagnostics, quantum computing, and genomic integration, anticipating potential challenges and strategizing for the future. In doing so, this paper highlights the paramount importance of adopting an integrated approach that seamlessly blends technological innovation, ethical foresight, and collaborative ingenuity, thereby steering BioMEMS towards a secure and resilient future within smart healthcare systems, in the ambit of IoT communication security and protection.
Keyphrases
- healthcare
- global health
- patient safety
- electronic health record
- health information
- public health
- gene expression
- high throughput
- mass spectrometry
- dna methylation
- molecular dynamics
- gold nanoparticles
- quality improvement
- transcription factor
- current status
- single cell
- data analysis
- risk assessment
- ionic liquid
- affordable care act