In-vivoviscoelastic properties estimation in subcutaneous adipose tissue by integration of poroviscoelastic-mass transport model (pve-MTM) into wearable electrical impedance tomography (w-EIT).
Irfan Aditya DharmaDaisuke KawashimaMarlin Ramadhan BaidillahPanji Nursetia DarmaMasahiro TakeiPublished in: Biomedical physics & engineering express (2021)
In-vivoviscoelastic properties have been estimated in human subcutaneous adipose tissue (SAT) by integration of poroviscoelastic-mass transport model (pve-MTM) into wearable electrical impedance tomography (w-EIT) under the influence of external compressive pressure-P.Thepve-MTM predicts the ion concentration distributioncmod(t)by coupling the poroviscoelastic and mass transport model to describe the hydrodynamics, rheology, and transport phenomena inside SAT. Thew-EIT measures the time-difference conductivity distribution∆γ(t)in SAT resulted from the ion transport. Based on the integration, the two viscoelastic properties which are viscoelastic shear modulus of SATGvand relaxation time of SATτvare estimated by applying an iterative curve-fitting between the normalized average ion concentration distributioncˆmod(t)predicted frompve-MTM and the experimental normalized average ion concentration distributioncˆexp(t)derived fromw-EIT. Thein-vivoexperiments were conducted by applying external compressive pressure-Pon human calf boundary to induce interstitial fluid flow and ion movement in SAT. As a result, the value ofGvwas range from 4.9-6.3 kPa and the value ofτvwas range from 27.50-38.5 s with the value of average goodness-of-fit curve fittingR2 > 0.76. These values ofGvandτvwere compared to the human and animal tissue from the literature in order to verify this method. The results frompve-MTM provide evidence thatGvandτvplay a role in the predicted value ofcˆmod.