Login / Signup

The Effect of Vacuum Deep Frying Technology and Raphanus sativus on the Quality of Surimi Cubes.

Jinghao ChenYi LeiJiaxin ZuoZeBin GuoSong MiaoBaodong ZhengXu Lu
Published in: Foods (Basel, Switzerland) (2021)
This study uses a response surface methodology to optimize the vacuum deep frying process of surimi cubes. The effects of vacuum deep frying temperature, frying time, and thickness on the hardness and color difference of surimi cubes with Raphanus sativus were studied. Further, the manuscript explored the quality changes of surimi cubes under different frying processes (vacuum deep frying, atmospheric deep frying, and shallow frying). Moreover, the Chinese Min-Cantonese cuisine-Raphanus sativus was utilized as auxiliary raw material to change the hardness and reduce the oil content. The optimal parameters of response surface methodology determined were: vacuum deep frying temperature 130 °C, frying time 900 s, and thickness 0.75 cm. Additionally, under this process condition, the hardness of the surimi chunks was 2015 ± 48.17 g, and the color difference was 23.27 ± 1.86. Surimi cubes without Raphanus sativus have superior elasticity and low hardness, and surimi cubes with Raphanus sativus have little color difference and high chewability. After the vacuum deep frying process, there was a high protein content and superior crispness. Shallow frying and adding Raphanus sativus effectively reduced the product's oil content. Therefore, Raphanus sativus is suitable as a potential nutritional supplement to broaden its application in fried surimi foods.
Keyphrases
  • optical coherence tomography
  • climate change
  • protein protein