Login / Signup

An In Silico and an In Vitro Inhibition Analysis of Glycogen Phosphorylase by Flavonoids, Styrylchromones, and Pyrazoles.

Sónia RochaNatália AnicetoRita C GuedesHélio M T AlbuquerqueVera L M SilvaCarlos F M SilvaMaria Luísa CorvoEduarda FernandesMarisa Freitas
Published in: Nutrients (2022)
Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway. GP inhibitors are currently under investigation as a new liver-targeted approach to managing type 2 diabetes mellitus (DM). The aim of the present study was to evaluate the inhibitory activity of a panel of 52 structurally related chromone derivatives; namely, flavonoids, 2-styrylchromones, 2-styrylchromone-related derivatives [2-(4-arylbuta-1,3-dien-1-yl)chromones], and 4- and 5-styrylpyrazoles against GP, using in silico and in vitro microanalysis screening systems. Several of the tested compounds showed a potent inhibitory effect. The structure-activity relationship study indicated that for 2-styrylchromones and 2-styrylchromone-related derivatives, the hydroxylations at the A and B rings, and in the flavonoid family, as well as the hydroxylation of the A ring, were determinants for the inhibitory activity. To support the in vitro experimental findings, molecular docking studies were performed, revealing clear hydrogen bonding patterns that favored the inhibitory effects of flavonoids, 2-styrylchromones, and 2-styrylchromone-related derivatives. Interestingly, the potency of the most active compounds increased almost four-fold when the concentration of glucose increased, presenting an IC 50 < 10 µM. This effect may reduce the risk of hypoglycemia, a commonly reported side effect of antidiabetic agents. This work contributes with important considerations and provides a better understanding of potential scaffolds for the study of novel GP inhibitors.
Keyphrases
  • molecular docking
  • structure activity relationship
  • glycemic control
  • adipose tissue
  • cancer therapy
  • insulin resistance
  • blood glucose