The influence of error detection and error significance on neural and behavioral correlates of error processing in a complex choice task.
Elisa PorthAndré MattesJutta StahlPublished in: Cognitive, affective & behavioral neuroscience (2022)
Error detection and error significance form essential mechanisms that influence error processing and action adaptation. Error detection often is assessed by an immediate self-evaluation of accuracy. Our study used cognitive neuroscience methods to elucidate whether self-evaluation itself influences error processing by increasing error significance in the context of a complex response selection process. In a novel eight-alternative response task, our participants responded to eight symbol stimuli with eight different response keys and a specific stimulus-response assignment. In the first part of the experiment, the participants merely performed the task. In the second part, they also evaluated their response accuracy on each trial. We replicated variations in early and later stages of error processing and action adaptation as a function of error detection. The additional self-evaluation enhanced error processing on later stages, probably reflecting error evidence accumulation, whereas earlier error monitoring processes were not amplified. Implementing multivariate pattern analysis revealed that self-evaluation influenced brain activity patterns preceding and following the response onset, independent of response accuracy. The classifier successfully differentiated between responses from the self- and the no-self-evaluation condition several hundred milliseconds before response onset. Subsequent exploratory analyses indicated that both self-evaluation and the time on task contributed to these differences in brain activity patterns. This suggests that in addition to its effect on error processing, self-evaluation in a complex choice task seems to have an influence on early and general processing mechanisms (e.g., the quality of attention and stimulus encoding), which is amplified by the time on task.