Dual Stimulus-Responsive Enzyme@Metal-Organic Framework-Polymer Composites toward Enhanced Catalytic Performance for Visual Detection of Glucose.
Muhammad Ali TajwarLi QiPublished in: ACS applied bio materials (2023)
Enzyme immobilization on a metal-organic framework (enzyme@MOF) has been proven to be a promising strategy for boosting catalysis and biosensing applications. However, promoting the catalytic performance of polymer-modified enzyme@MOF composites remains an ongoing challenge. Herein, a protocol for enzyme immobilization was designed by using a smart polymer-modified MOF (UiO-66-NH 2 , UN) as the support. Through in situ polymerization, the dual stimulus-responsive poly( N -2-dimethylamino ethyl methacrylate) (PDM) was prepared. The PDM as a "soft cage" protected the immobilized glucose oxidase (GOx)-horseradish peroxidase (HRP) on the surface of the rigid UN. The confinement effect was generated by varying the temperature and pH, thereby improving the catalytic activity of the GOx-HRP@UN-PDM composites. In comparison with free enzymes, the fabricated composites exhibited an 8.9-fold enhancement in catalytic performance ( V max ) at pH 5.0 and 49 °C. Furthermore, relying on a cascade reaction generated in the composites, an assay was developed for the visual detection of glucose in rat serum. This study introduces a groundbreaking approach for the construction of smart enzyme@MOF-polymer composites with high catalytic activity for sensitive monitoring of biomolecules.