Login / Signup

Intracellular Interaction of Hydroxyapatite-Based Nanocrystals with Uniform Shape and Traceable Fluorescence.

Xi-Yu LiQin ZouWei LiHaifeng Chen
Published in: Inorganic chemistry (2018)
The intracellular interaction between osteoblasts and hydroxyapatite (HA) is of great importance for future applications of HA nanocrystals in tracing cell differentiation and bone regeneration. This research attempts to provide insight into the intracellular interaction between osteoblasts and synthetic HA nanocrystals by employing the uniform shape and fluorescence of terbium-doped HA nanocrystals jointly for the first time. When cultured for 7 days, the abundant cytoplasm of the osteoblasts could be clearly and homogeneously visualized via the green fluorescence of the internalized HA nanocrystals, which kept a uniform morphology but showed a slight size decrease and degradation; the gene expression of the osteoblasts was not obviously affected. However, on day 14, the uniform HA nanocrystals had degraded into smaller and irregular nanoparticles, and agglomeration had occurred. Meanwhile, multilayer membrane structures and vacuolization around the degraded HA particles appeared in the osteoblasts; the expression of genes largely decreased, or the genes could not be normally expressed. The results indicate that the morphology and composition change of the internalized HA nanocrystals and the microstructure change of the osteoblasts are closely related and correspond to each other. The feasible new method and insightful details will aid in future investigations of the interaction of synthetic HA nanocrystals with various cells. The results from the intracellular interaction also remind us to pay more attention to the in-depth study of HA nanoparticles used for bone repair and reconstruction.
Keyphrases