Login / Signup

Critical Condition of the Depth Limit of Oil Accumulation of Carbonate Reservoirs and Its Exploration Significance in the Lower Ordovician of the Tazhong Area in the Tarim Basin.

Wenyang WangXiongqi PangYaping WangFujie JiangYing ChenZhangxin Chen
Published in: ACS omega (2023)
Carbonate rocks typically constitute porous media, making the study of hydrocarbon accumulation in carbonate reservoirs an essential area of research. In the Tazhong area of the Tarim Basin, specifically within the Lower Ordovician stratum exceeding 7000 m, effective reservoirs and industrial liquid hydrocarbon accumulations persist. However, the existence of a depth limit of oil accumulation (DLOA) for oil accumulation in carbonate reservoirs remains unclear, posing a challenge for explorers. This study quantitatively characterizes the critical condition of DLOA in deep carbonate reservoirs from the perspective of hydrocarbon accumulation dynamics. Through comprehensive experimental analysis, statistical assessments, and numerical simulations, it also forecasts the potential for deep oil exploration. Based on the results of mercury injection experiments on 350 carbonate rock cores collected from 19 drilling wells in the deep Lower Ordovician, it was found that the reservoir is compact and exhibits significant heterogeneity. The driving force for oil accumulation is the capillary pressure difference between the surrounding rock and the reservoir. A greater capillary pressure difference indicates improved oil-bearing properties within the reservoir. When the capillary pressure difference between the reservoir and surrounding rock reaches zero, oil accumulation cannot occur, marking the critical condition of DLOA. The critical pore throat radius for DLOA in the deep Lower Ordovician carbonate rocks in the Tazhong area of the Tarim Basin is determined to be 0.01 μm, and the DLOA is estimated at 9000 m. This study confirms that the maximum depth for the embedded Lower Ordovician carbonate reservoir in the Tazhong area does not surpass this limit. Consequently, oil exploration in deep carbonate rocks within this stratum is both feasible and promising. The findings from this study hold significant importance in scientifically predicting favorable areas for oil exploitation in deep layers and offer valuable insights into understanding the oil flow in carbonate rocks.
Keyphrases
  • fatty acid
  • climate change
  • water quality
  • optical coherence tomography
  • heavy metals
  • single cell
  • ionic liquid
  • data analysis