Login / Signup

Discovering a novel D-xylonate-responsive promoter: the PyjhI-driven genetic switch towards better 1,2,4-butanetriol production.

Angelo B BañaresKris Niño G ValdehuesaKristine Rose M RamosGrace M NisolaWon-Keun LeeWook-Jin Chung
Published in: Applied microbiology and biotechnology (2019)
The capability of Escherichia coli to catabolize D-xylonate is a crucial component for building and optimizing the Dahms pathway. It relies on the inherent dehydratase and keto-acid aldolase activities of E. coli. Although the biochemical characteristics of these enzymes are known, their inherent expression regulation remains unclear. This knowledge is vital for the optimization of D-xylonate assimilation, especially in addressing the problem of D-xylonate accumulation, which hampers both cell growth and target product formation. In this report, molecular biology techniques and synthetic biology tools were combined to build a simple genetic switch controller for D-xylonate. First, quantitative and relative expression analysis of the gene clusters involved in D-xylonate catabolism were performed, revealing two D-xylonate-inducible operons, yagEF and yjhIHG. The 5'-flanking DNA sequence of these operons were then subjected to reporter gene assays which showed PyjhI to have low background activity and wide response range to D-xylonate. A PyjhI-driven synthetic genetic switch was then constructed containing feedback control to autoregulate D-xylonate accumulation and to activate the expression of the genes for 1,2,4-butanetriol (BTO) production. The genetic switch effectively reduced D-xylonate accumulation, which led to 31% BTO molar yield, the highest for direct microbial fermentation systems thus far. This genetic switch can be further modified and employed in the production of other compounds from D-xylose through the xylose oxidative pathway.
Keyphrases