Login / Signup

Aryl Hydrocarbon Receptor Activation Limits the Fatty Acid Synthesis and Subsequent "miR-193a-3p-HDAC3-FASN" Signals to Alleviate Intestinal Fibrosis.

Xiaoqian WuXiaohong MiaoXinru XueSimiao QiaoYue DaiZhi-Feng Wei
Published in: Journal of agricultural and food chemistry (2024)
Intestinal fibrosis is a common complication of Crohn's disease and characterized by excessive extracellular matrix (ECM) deposition. The aryl hydrocarbon receptor (AhR) detects micronutrients and microbial metabolites in diet and can attenuate intestinal fibrosis with unclear mechanisms. In this study, AhR activation was demonstrated to downregulate the transcription of collagen I and fibronectin in a Sp1- but not Sp3- or AP-1-dependent manner. A suppressed fatty acid synthesis was highlighted using untargeted metabolomics analyses, and synthetic products, palmitic acid (PA), were used as the intermediary agent. After a screening study, fatty acid synthase (FASN) was identified as the main targeted protein, and AhR activation regulated "HDAC3-acetylation" signals but not glycosylation to enhance FASN degradation. Furthermore, results of bioinformatics analysis and others showed that after being activated, AhR targeted miR-193a-3p to control HDAC3 transcription. Collectively, AhR activation inhibited ECM deposition and alleviated intestinal fibrosis by limiting fatty acid synthesis subsequent to the inhibition of "miR-193a-3p-HDAC3-FASN" signals.
Keyphrases
  • fatty acid
  • extracellular matrix
  • histone deacetylase
  • transcription factor
  • mass spectrometry
  • bioinformatics analysis
  • microbial community
  • ms ms
  • binding protein
  • small molecule
  • drug delivery