GC-MS and HS-SPME-GC×GC-TOFMS Determination of the Volatile Composition of Essential Oils and Hydrosols (By-Products) from Four Eucalyptus Species Cultivated in Tuscany.
Francesca IeriLorenzo CecchiElena GianniniClarissa ClementeAnnalisa RomaniPublished in: Molecules (Basel, Switzerland) (2019)
Essential oils are widely used as functional ingredients for potential multi-purpose functional uses. Hydrosols, co-products of the distillation of plant material, are used in food and cosmetic industries and in biological agriculture, but their volatile composition is poorly investigated. The volatile fractions of essential oils and hydrosols from four less-studied 1,8-cineol-rich Eucalyptus species (E. parvula L.A.S. Johnson & K.D. Hill, E. cinerea F. Muell, E. pulverulenta Sims and E. pulverulenta baby blue Sims), cultivated in Tuscany in a system of organic farming, were characterized by solvent dilution (essential oils) or extraction (hydrosols) followed by GC-MS and by HS-SPME-GC×GC-TOFMS analysis. GC-MS analysis showed that essential oils were mainly constituted by oxygenated monoterpenes, particularly 1,8-cineole, with monoterpenes hydrocarbons up to 10.8%. Relative differences in the abundance of minor terpenes as limonene, α-pinene, γ-terpinene, p-cymene, terpinen-4-ol, α-terpineol, and alloaromandrene were pointed out and seem to be suitable for differentiation among EOs of the four different Eucalyptus species. Hydrosols of these species were characterized for the first time: they were mainly constituted by oxygenated monoterpenes (97.6⁻98.9%), with 1,8-cineole up to 1.6 g/L, while monoterpene and sesquiterpene hydrocarbons were detected only in traces. HS-SPME-GC×GC-TOFMS analysis also allowed providing metabolic profiling of hydrosols for the direct comparison and visualization of volatile components, pointing out the potentially different uses of these products as functional ingredients in food, beverage, and cosmetic industries.