Relocation to avoid costs: A hypothesis on red carotenoid-based signals based on recent CYP2J19 gene expression data.
Carlos Alonso-AlvarezPedro AndradeAlejandro CantareroJudith MoralesMiguel CarneiroPublished in: BioEssays : news and reviews in molecular, cellular and developmental biology (2022)
In many vertebrates, the enzymatic oxidation of dietary yellow carotenoids generates red keto-carotenoids giving color to ornaments. The oxidase CYP2J19 is here a key effector. Its purported intracellular location suggests a shared biochemical pathway between trait expression and cell functioning. This might guarantee the reliability of red colorations as individual quality signals independent of production costs. We hypothesize that the ornament type (feathers vs. bare parts) and production costs (probably CYP2J19 activity compromising vital functions) could have promoted tissue-specific gene relocation. We review current avian tissue-specific CYP2J19 expression data. Among the ten red-billed species showing CYP2J19 bill expression, only one showed strong hepatic expression. Moreover, a phylogenetically-controlled analysis of 25 red-colored species shows that those producing red bare parts are less likely to have strong hepatic CYP2J19 expression than species with only red plumages. Thus, both production costs and shared pathways might have contributed to the evolution of red signals.