Login / Signup

Phage Cocktail Development against Aeromonas salmonicida subsp. salmonicida Strains Is Compromised by a Prophage.

Nava HosseiniValérie E PaquetMahdi ChehreghaniSylvain MoinauSteve J Charette
Published in: Viruses (2021)
Aquaculture is a rapidly growing food production sector. Fish farmers are experiencing increasing problems with antibiotic resistance when fighting against pathogenic bacteria such as Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis. Phage therapy may provide an alternative, but effective use must be determined. Here, we studied the inhibition of A. salmonicida subsp. salmonicida strains by five phages (HER98 [44RR2.8t.2], HER110 [65.2], SW69-9, L9-6 and Riv-10) used individually or as combinations of two to five phages. A particular combination of four phages (HER98 [44RR2.8t.2], SW69-9, Riv-10, and HER110 [65.2]) was found to be the most effective when used at an initial multiplicity of infection (MOI) of 1 against the A. salmonicida subsp. salmonicida strain 01-B526. The same phage cocktail is effective against other strains except those bearing a prophage (named Prophage 3), which is present in 2/3 of the strains from the province of Quebec. To confirm the impact of this prophage, we tested the effectiveness of the same cocktail on strains that were either cured or lysogenized with Prophage 3. While the parental strains were sensitive to the phage cocktail, the lysogenized ones were much less sensitive. These data indicate that the prophage content of A. salmonicida subsp. salmonicida can affect the efficacy of a cocktail of virulent phages for phage therapy purposes.
Keyphrases
  • escherichia coli
  • pseudomonas aeruginosa
  • randomized controlled trial
  • mental health
  • stem cells
  • machine learning
  • south africa
  • risk assessment
  • climate change