The Bioactivity and Physicochemical Properties of Emulsions Based on Tamanu, Moringa, and Inca Inchi Oils.
Aleksandra MakiejZofia HochórWojciech SmułekEwa KaczorekPublished in: Foods (Basel, Switzerland) (2023)
With increasing bacterial resistance to antibiotics, novel strategies for protection against microbial infections are crucial. Emulsions enhance the solubility of natural antibacterial oils and their uptake, making them promising drug delivery systems. However, it is important to find the right emulsifier to ensure that the oil has the right dispersion and does not adversely affect its antibacterial properties. Hence, this study investigated emulsions created from three vegetable oils: moringa oil from Moringa oleifera seeds, inca inchi oil from Plukenetia volubilis seeds, and tamanu oil from the Calophyllum inophyllum fruit. Emulsions were formed using two natural emulsifiers, lecithin and casein, at concentrations of 2.5%, 5%, and 10% ( w / w ). The study assessed the oil and emulsions' characteristics, including the zeta potential, creaming index, and particle size distribution. The antimicrobial properties of these oils and the most stable emulsions were examined. Gas chromatography was used to analyze the oil compositions. The potential antimicrobial properties of emulsions formulated with natural oils was proved. Particularly noteworthy were emulsions containing a 2.5% inca inchi or tamanu oil, stabilized with casein. The particle size ranged between 100 nm and 900 nm with the average size 300 nm. These emulsions also showed antibacterial activity against selected strains, and the strongest effect was observed for the system with inca inchi oil, which reduced S. epidermidis bacterial activity by more than 60%. Therefore, it can be expected that the completed research will allow the development of antibacterial systems based on inca inchi or tamanu oils for use in the food industry.