MicroRNA-16-5p Inhibits Osteoclastogenesis in Giant Cell Tumor of Bone.
Shang SangZhichang ZhangShu QinChangwei LiYang DongPublished in: BioMed research international (2017)
Giant cell tumor (GCT) of bone is an aggressive skeletal tumor characterized by localized bone resorption. MicroRNA-16-5p (miR-16-5p) has been reported to be downregulated in lesions of patients with GCT, but little is known about its role in GCT. To explore the underlying function of miR-16-5p in GCT, we first detected its expression in patients with GCT. The results showed that osteoclast formation increased, whereas miR-16-5p expression considerably decreased with the severity of bone destruction. Furthermore, we found that miR-16-5p expression considerably decreased with the progression of receptor activator of nuclear factor-κB ligand- (RANKL-) induced osteoclastogenesis. Functionally, miR-16-5p mimics significantly reduced RANKL-induced osteoclast formation. However, treatment with an inhibitor of miR-16-5p significantly promoted osteoclastogenesis. These findings reveal that miR-16-5p inhibits osteoclastogenesis and that it may represent a therapeutic target for giant cell tumor of bone.