Synthetic Indolactam V Analogues as Inhibitors of PAR2-Induced Calcium Mobilization in Triple-Negative Breast Cancer Cells.
Jan SteinSonja StahnJörg-M NeudörflJulia SperlichHans-Günther SchmalzNicole TeuschPublished in: ChemMedChem (2018)
Human proteinase-activated receptor 2 (PAR2), a transmembrane G-protein-coupled receptor (GPCR), is an attractive target for a novel anticancer therapy, as it plays a critical role in cell migration and invasion. Selective PAR2 inhibitors therefore have potential as anti-metastatic drugs. Knowing that the natural product teleocidin A2 is able to inhibit PAR2 in tumor cells, the goal of the present study was to elaborate structure-activity relationships and to identify potent PAR2 inhibitors with lower activity against the adverse target, protein kinase C (PKC). For this purpose, an efficient gram-scale total synthesis of indolactam V (i.e., the parent structure of all teleocidins) was developed, and a library of derivatives was prepared. Some compounds were indeed found to exhibit high potency as PAR2 inhibitors at low nanomolar concentrations with improved selectivity (relative to teleocidin A2). The pseudopeptidic fragment bridging the C3 and C4 positions of the indole core proved to be essential for target binding, whereas activity and target selectivity depends on the substituents at N1 or C7. This study revealed novel derivatives that show high efficacy in PAR2 antagonism combined with increased selectivity.
Keyphrases
- protein kinase
- endothelial cells
- breast cancer cells
- single cell
- small cell lung cancer
- squamous cell carcinoma
- stem cells
- emergency department
- mesenchymal stem cells
- cell therapy
- oxidative stress
- bone marrow
- high glucose
- risk assessment
- molecular docking
- structure activity relationship
- molecular dynamics simulations
- human health
- anti inflammatory
- induced pluripotent stem cells
- adverse drug
- pluripotent stem cells