Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak.
Amir VeisiHadi DelavariPublished in: Mathematical methods in the applied sciences (2021)
The coronavirus disease (COVID-19) pandemic has impacted many nations around the world. Recently, new variant of this virus has been identified that have a much higher rate of transmission. Although vaccine production and distribution are currently underway, non-pharmacological interventions are still being implemented as an important and fundamental strategy to control the spread of the virus in countries around the world. To realize and forecast the transmission dynamics of this disease, mathematical models can be very effective. Various mathematical modeling methods have been proposed to investigate the transmission patterns of this new infection. In this paper, we utilized the fractional-order dynamics of COVID-19. The goal is to control the prevalence of the disease using non-pharmacological interventions. In this paper, a novel fractional-order backstepping sliding mode control (FOBSMC) is proposed for non-pharmacological decisions. Recently, new variant of this virus have been identified that have a much higher rate of transmission, so finally the effectiveness of the proposed controller in the presence of new variant of COVID-19 is investigated.