Login / Signup

Rapid protein stability prediction using deep learning representations.

Lasse M BlaabjergMaher M KassemLydia L GoodNicolas JonssonMatteo CagiadaKristoffer E JohanssonWouter BoomsmaAmelie SteinKresten Lindorff-Larsen
Published in: eLife (2023)
Predicting the thermodynamic stability of proteins is a common and widely used step in protein engineering, and when elucidating the molecular mechanisms behind evolution and disease. Here, we present RaSP, a method for making rapid and accurate predictions of changes in protein stability by leveraging deep learning representations. RaSP performs on-par with biophysics-based methods and enables saturation mutagenesis stability predictions in less than a second per residue. We use RaSP to calculate ∼ 300 million stability changes for nearly all single amino acid changes in the human proteome, and examine variants observed in the human population. We find that variants that are common in the population are substantially depleted for severe destabilization, and that there are substantial differences between benign and pathogenic variants, highlighting the role of protein stability in genetic diseases. RaSP is freely available-including via a Web interface-and enables large-scale analyses of stability in experimental and predicted protein structures.
Keyphrases
  • amino acid
  • deep learning
  • protein protein
  • copy number
  • endothelial cells
  • binding protein
  • machine learning
  • crispr cas
  • high resolution
  • artificial intelligence
  • gene expression
  • small molecule
  • quantum dots