Login / Signup

Class A PBPs have a distinct and unique role in the construction of the pneumococcal cell wall.

Daniel StraumeKatarzyna Wiaroslawa PiechowiakSilje OlsenGro Anita StamsåsKari Helene BergMorten KjosMaria Victoria HeggenhougenMartín Alcorlo-PagésJuan A HermosoLeiv Sigve Håvarstein
Published in: Proceedings of the National Academy of Sciences of the United States of America (2020)
In oval-shaped Streptococcus pneumoniae, septal and longitudinal peptidoglycan syntheses are performed by independent functional complexes: the divisome and the elongasome. Penicillin-binding proteins (PBPs) were long considered the key peptidoglycan-synthesizing enzymes in these complexes. Among these were the bifunctional class A PBPs, which are both glycosyltransferases and transpeptidases, and monofunctional class B PBPs with only transpeptidase activity. Recently, however, it was established that the monofunctional class B PBPs work together with transmembrane glycosyltransferases (FtsW and RodA) from the shape, elongation, division, and sporulation (SEDS) family to make up the core peptidoglycan-synthesizing machineries within the pneumococcal divisome (FtsW/PBP2x) and elongasome (RodA/PBP2b). The function of class A PBPs is therefore now an open question. Here we utilize the peptidoglycan hydrolase CbpD that targets the septum of S. pneumoniae cells to show that class A PBPs have an autonomous role during pneumococcal cell wall synthesis. Using assays to specifically inhibit the function of PBP2x and FtsW, we demonstrate that CbpD attacks nascent peptidoglycan synthesized by the divisome. Notably, class A PBPs could process this nascent peptidoglycan from a CbpD-sensitive to a CbpD-resistant form. The class A PBP-mediated processing was independent of divisome and elongasome activities. Class A PBPs thus constitute an autonomous functional entity which processes recently formed peptidoglycan synthesized by FtsW/PBP2×. Our results support a model in which mature pneumococcal peptidoglycan is synthesized by three functional entities, the divisome, the elongasome, and bifunctional PBPs. The latter modify existing peptidoglycan but are probably not involved in primary peptidoglycan synthesis.
Keyphrases
  • cell wall
  • bacillus subtilis
  • induced apoptosis
  • heart failure
  • high throughput
  • cross sectional
  • signaling pathway
  • cell death
  • endoplasmic reticulum stress
  • oxide nanoparticles
  • community acquired pneumonia