Inula britannica Inhibits Adipogenesis of 3T3-L1 Preadipocytes via Modulation of Mitotic Clonal Expansion Involving ERK 1/2 and Akt Signaling Pathways.
Hyung-Seok YuWon-Ju KimWon-Young BaeNa-Kyoung LeeHyun-Dong PaikPublished in: Nutrients (2020)
The flower of Inula britannica contains various phenolic compounds with prophylactic properties. This study aimed to determine the anti-adipogenic effect of an I. britannica flower aqueous extract (IAE) and its underlying mechanisms in the 3T3-L1 preadipocytes and to identify the phenolic compounds in the extract. Treatment with IAE inhibited the adipogenesis by showing a dose-dependent suppressed intracellular lipid accumulation and mitigated expression levels of lipogenesis- and adipogenesis-associated biomarkers including transcription factors. IAE exerted an anti-adipogenic effect through the modulation of the early phases of adipogenesis including mitotic clonal expansion (MCE). Treatment with IAE inhibited MCE by arresting the cell cycle at the G0/G1 phase and suppressing the activation of MCE-related transcription factors. Furthermore, IAE inhibited adipogenesis by regulating the extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Protocatechuic acid, chlorogenic acid, kaempferol-3-O-glucoside, and 6-methoxyluteolin, which are reported to exhibit anti-adipogenic properties, were detected in IAE. Therefore, modulation of early phases of adipogenesis, especially MCE, is a key mechanism underlying the anti-adipogenic activity of IAE. In summary, the anti-obesity effects of IAE can be attributed to its phenolic compounds, and hence, IAE can be used for the development of anti-obesity products.
Keyphrases
- high fat diet induced
- signaling pathway
- cell cycle
- cell proliferation
- transcription factor
- insulin resistance
- metabolic syndrome
- type diabetes
- pi k akt
- weight loss
- induced apoptosis
- epithelial mesenchymal transition
- weight gain
- physical activity
- body mass index
- ionic liquid
- replacement therapy
- dna binding
- protein kinase