Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains.
Nikhil NaikAli MadaniAndre EstevaNitish Shirish KeskarMichael F PressDaniel RudermanDavid B AgusRichard SocherPublished in: Nature communications (2020)
For newly diagnosed breast cancer, estrogen receptor status (ERS) is a key molecular marker used for prognosis and treatment decisions. During clinical management, ERS is determined by pathologists from immunohistochemistry (IHC) staining of biopsied tissue for the targeted receptor, which highlights the presence of cellular surface antigens. This is an expensive, time-consuming process which introduces discordance in results due to variability in IHC preparation and pathologist subjectivity. In contrast, hematoxylin and eosin (H&E) staining-which highlights cellular morphology-is quick, less expensive, and less variable in preparation. Here we show that machine learning can determine molecular marker status, as assessed by hormone receptors, directly from cellular morphology. We develop a multiple instance learning-based deep neural network that determines ERS from H&E-stained whole slide images (WSI). Our algorithm-trained strictly with WSI-level annotations-is accurate on a varied, multi-country dataset of 3,474 patients, achieving an area under the curve (AUC) of 0.92 for sensitivity and specificity. Our approach has the potential to augment clinicians' capabilities in cancer prognosis and theragnosis by harnessing biological signals imperceptible to the human eye.
Keyphrases
- deep learning
- newly diagnosed
- machine learning
- neural network
- estrogen receptor
- end stage renal disease
- molecularly imprinted
- artificial intelligence
- convolutional neural network
- endothelial cells
- chronic kidney disease
- ejection fraction
- big data
- magnetic resonance
- prognostic factors
- papillary thyroid
- peritoneal dialysis
- single molecule
- type diabetes
- high resolution
- binding protein
- solid phase extraction
- adipose tissue
- induced pluripotent stem cells
- squamous cell
- immune response
- pluripotent stem cells
- risk assessment
- replacement therapy
- young adults
- liquid chromatography