Login / Signup

Detecting task-relevant spatiotemporal modules and their relation to motor adaptation.

Masato InoueDaisuke FurukiKen Takiyama
Published in: PloS one (2022)
How does the central nervous system (CNS) control our bodies, including hundreds of degrees of freedom (DoFs)? A hypothesis to reduce the number of DoFs posits that the CNS controls groups of joints or muscles (i.e., modules) rather than each joint or muscle independently. Another hypothesis posits that the CNS primarily controls motion components relevant to task achievements (i.e., task-relevant components). Although the two hypotheses are examined intensively, the relationship between the two concepts remains unknown, e.g., unimportant modules may possess task-relevant information. Here, we propose a framework of task-relevant modules, i.e., modules relevant to task achievements, while combining the two concepts mentioned above in a data-driven manner. To examine the possible role of the task-relevant modules, we examined the modulation of the task-relevant modules in a motor adaptation paradigm in which trial-to-trial modifications of motor output are observable. The task-relevant modules, rather than conventional modules, showed adaptation-dependent modulations, indicating the relevance of task-relevant modules to trial-to-trial updates of motor output. Our method provides insight into motor control and adaptation via an integrated framework of modules and task-relevant components.
Keyphrases
  • network analysis
  • clinical trial
  • study protocol
  • phase iii
  • blood brain barrier
  • randomized controlled trial
  • skeletal muscle
  • high speed
  • high resolution
  • open label