Login / Signup

Efficient DLPNO-CCSD(T)-Based Estimation of Formation Enthalpies for C-, H-, O-, and N-Containing Closed-Shell Compounds Validated Against Critically Evaluated Experimental Data.

Eugene PaulechkaAndrei Kazakov
Published in: The journal of physical chemistry. A (2017)
An accurate and cost-efficient methodology for the estimation of the enthalpies of formation for closed-shell compounds composed of C, H, O, and N atoms is presented and validated against critically evaluated experimental data. The computational efficiency is achieved through the use of the resolution-of-identity (RI) and domain-based local pair-natural orbital coupled cluster (DLPNO-CCSD(T)) approximations, which results in a drastic reduction in both the computational cost and the number of necessary steps for a composite quantum chemical method. The expanded uncertainty for the proposed methodology evaluated using a data set of 45 thoroughly vetted experimental values for molecules containing up to 12 heavy atoms is about 3 kJ·mol-1, competitive with those of typical calorimetric measurements. For the compounds within the stated scope, the methodology is shown to be superior to a representative, more general, and widely used composite quantum chemical method, G4.
Keyphrases
  • electronic health record
  • big data
  • molecular dynamics
  • high resolution
  • data analysis
  • cross sectional
  • single molecule
  • artificial intelligence