The acute systemic toxicity of thallium in rats produces oxidative stress: attenuation by metallothionein and Prussian blue.
Laura Anaya-RamosAraceli Díaz-RuízCamilo RíosMarisela Mendez-ArmentaSergio MontesYoshajandith Aguirre-VidalSara García-JiménezVeronica Baron-FloresAntonio Monroy NoyolaPublished in: Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine (2021)
Thallium (TI) is one of the most toxic heavy metals. Human exposure to Tl occurs through contaminated drinking water and from there to food, a threat to health. Recently, environmental contamination by Tl has been reported in several countries, urging the need for studies to determine the impact of endogenous and exogenous mechanisms preventing thallium toxicity. The cytoprotective effect of metallothionein (MT), a protein with high capacity to chelate metals, at two doses (100 and 600 µg/rat), was tested. Prussian blue (PB) (50 mg/kg) was administered alone or in combination with MT. A dose of Tl (16mg/kg) was injected i.p. to Wistar rats. Antidotes were administered twice daily, starting 24h after Tl injection, for 4 days. Tl concentrations diminished in most organs (p < 0.05) by effect of PB, alone or in combination with MT, whereas MT alone decreased Tl concentrations in testis, spleen, lung and liver. Likewise, brain thallium also diminished (p < 0.05) by effect of PB and MT alone or in combination in most of the regions analyzed (p < 0.05). The greatest diminution of Tl was achieved when the antidotes were combined. Plasma markers of renal damage increased after Tl administration, while PB and MT, either alone or in combination, prevented the raise of those markers. Only MT increased the levels of reduced glutathione (GSH) in the kidney. Finally, increased Nrf2 was observed in liver and kidney, after treatment with MT alone or in combination with PB. Results showed that MT alone or in combination with PB is cytoprotective after thallium exposure.
Keyphrases
- heavy metals
- oxidative stress
- health risk
- health risk assessment
- drinking water
- risk assessment
- human health
- healthcare
- endothelial cells
- sewage sludge
- dna damage
- physical activity
- multiple sclerosis
- diabetic rats
- intensive care unit
- climate change
- drug induced
- blood brain barrier
- health information
- social media
- pluripotent stem cells