Login / Signup

Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing.

Zahra BashiriIraj AmiriMazaher GholipourmalekabadiReza FalakHamidreza AsgariChad B MakiAli MoghaddaszadehMorteza Koruji
Published in: Biomaterials science (2021)
Testicular scaffolds may be an option for fertility preservation. The aim was to develop various procedures for the decellularization of testicular tissue and to design a bio-ink to construct a bioartificial testis. Ram testicular tissue fragments were decellularized using NaCl buffer, NaCl buffer-Triton, SDS and SDS-Triton. The removal of the cells from the tissues was confirmed by DAPI and H & E staining, as well as the evaluation of the DNA content. Alcian blue, Orcein and Masson's trichrome staining methods were also used to confirm that T-ECM was preserved intact. Then, the optimal decellularization protocol was selected to determine the parameters of the bio-ink and printing of the scaffold. The extracted T-ECM was used to print the hydrogel scaffold in combination with alginate-gelatin. The printability, morphological, mechanical and biological properties of the printed hydrogels were characterized. Decellularization of testicular tissue fragments using the NaCl buffer-Triton protocol was significantly more efficient than other decellularization methods in removing the cellular debris and preserving the T-ECM compounds. The 3D printed scaffold with 5% T-ECM showed a uniform surface morphology with high cell attachment and cyto-biocompatibility properties for spermatogonia stem cells in vitro and in vivo compared to other groups. It is concluded that T-ECM can be used as a biomimetic material to make an artificial testis with possible in vitro sperm production.
Keyphrases