Login / Signup

Zika Virus NS1 Suppresses VE-Cadherin and Claudin-5 via hsa-miR-101-3p in Human Brain Microvascular Endothelial Cells.

Utkarsh BhardwajSunit Kumar Singh
Published in: Molecular neurobiology (2021)
Zika virus (ZIKV) is a neurotropic virus that causes microcephaly in newborns and Guillain-Barré syndrome (GBS) in adults. ZIKV is known to transmigrate through the blood-brain barrier (BBB) by utilizing different strategies. NS1 is a conserved flavivirus protein, which is secreted extracellularly. ZIKV-NS1 has been shown to target adherens junctions (AJs) and tight junctions (TJs) to disrupt the endothelial barrier integrity. The microRNAs are short non-coding RNAs, which post-transcriptionally regulate the gene expression by binding to 3' UTR of the target gene. In the present study, we studied the ZIKV-NS1-mediated effect through hsa-miR-101-3p on the junctional barrier integrity in human brain microvascular endothelial cells. We exposed hBMVECs and hCMEC/D3 cells with ZIKV-NS1 at different time points (12 h and 24 h) with the doses 500 ng/mL and 1000 ng/mL. The change in the expression of VE-cadherin and claudin-5 was quantified using immunoblotting. The expression of the hsa-miR-101-3p was quantified using qRT-PCR. To prove the targeting of hsa-miR-101-3p to VE-cadherin, we transfected hsa-miR-101-3p mimic, scramble, hsa-miR-101-3p inhibitor, and Cy3 in the ZIKV-NS1-exposed hCMEC/D3 cells. The distribution and expression of the VE-cadherin and claudin-5 were observed using immunofluorescence and immunoblotting. The ZIKV-NS1 compromises the endothelial barrier integrity by disrupting the VE-cadherin and claudin-5 protein expression via hsa-miR-101-3p. The findings of this study suggest that ZIKV-NS1 dysregulates the adherens junction and tight junction proteins through hsa-miR-101-3p, which compromises the barrier integrity of human brain microvascular endothelial cells.
Keyphrases