Login / Signup

Passive-Cooling Building Coating with Efficient Cooling Performance and Excellent Superhydrophobicity.

Xiaowei YangDefeng YanYi LuYulin ShangJing SunJinlong Song
Published in: Materials (Basel, Switzerland) (2023)
Passive-cooling building materials can achieve cooling without external energy consumption, which is an energy-saving and environmentally friendly cooling method. However, the existing passive-cooling building materials have the limitations of high cost, complicated processes, and a toxic organic solvent, which hinders the passive-cooling technology applied in practical building. To overcome these limitations, we developed a facile, high-efficiency, non-toxic, and superhydrophobic passive-cooling building coating (SPCBC) with an efficient cooling capability and excellent durability that was composed of polydimethylsiloxane and SiO 2 . The fabricated SPCBC demonstrated a high reflectance and a high emittance, showing a superior cooling capability with a 14 °C temperature drop compared with a bare cement surface on a hot summer day. In addition, the SPCBC could not be wetted or contaminated by muddy water, corrosive aqueous solutions, or dust, which presented an excellent anti-fouling and self-cleaning capability. Moreover, the fabricated SPCBC could work outdoors for 30 days, withstand UV irradiation for 30 days, and resist accelerated aging for 100 h without any significant changes in the superhydrophobicity and the cooling capability, meaning that the SPCBC had an outstanding durability. This work provides a new method to facilitate passive-cooling technology to apply in practical building in hot weather regions of the world.
Keyphrases
  • high efficiency
  • heavy metals
  • radiation therapy
  • quantum dots
  • ionic liquid
  • drinking water
  • health risk
  • advanced cancer
  • health risk assessment