Melanocortin-4 receptor and proopiomelanocortin: Candidate genes for obesity in domestic shorthair cats.
C P JerjenS J KumaranA LiesegangE HallB WichertBianca HaasePublished in: Animal genetics (2023)
Obesity is an escalating global health problem affecting both humans and companion animals. In cats it is associated with increased mortality and multiple diseases, including diabetes mellitus. Two genes coding for proteins known to play a critical role in energy homeostasis across species are the proopiomelanocortin (POMC) gene and the melanocortin-4 receptor (MC4R) gene. A missense variant in the coding sequence of the feline MC4R (MC4R:c.92C>T) has been reported to be associated with diabetes and overweight in domestic shorthair cats, and while variants in the POMC gene are known to cause obesity in humans and dogs, variants in POMC and their association with feline obesity and diabetes mellitus have not been investigated to date. The current study aimed to assess the association between the previously described MC4R variant and body condition score (BCS), as well as body fat content (%BF) in 89 non-diabetic domestic shorthair cats. Furthermore, we investigated the feline POMC gene as a potential candidate gene for obesity. Our results indicate that the MC4R:c.92C>T polymorphism is not associated with BCS or %BF in non-diabetic domestic shorthair cats. The mutation analysis of all POMC exons identified two missense variants, with a variant in exon 1 (c.28G>C; p.G10R) predicted to be damaging. The variant was subsequently assessed in all 89 cats, and cats heterozygous for the variant had a significantly increased body condition score (p = 0.03) compared with cats homozygous for the wild-type allele. Results from our study provide additional evidence that the previously described variant in MC4R is not associated with obesity in domestic shorthair cats. More importantly, we have identified a novel variant in the POMC gene, which might play a role in increased body condition score and body fat content in domestic shorthair cats.
Keyphrases
- copy number
- type diabetes
- weight loss
- insulin resistance
- metabolic syndrome
- genome wide
- weight gain
- genome wide identification
- high fat diet induced
- global health
- glycemic control
- cardiovascular disease
- public health
- early onset
- adipose tissue
- genome wide analysis
- physical activity
- dna methylation
- wild type
- transcription factor
- autism spectrum disorder
- wound healing
- mass spectrometry
- high resolution
- amino acid