Sperm-associated antigen 5 (SPAG5), also known as Astrin, was previously demonstrated as a biomarker for cellular resistance to major breast cancer therapies, including chemo-, endocrine- and targeted therapy. However, the contribution of SPAG5 to anthracycline- and taxane-based chemotherapy in triple-negative breast cancer (TNBC) remains controversial. In the present study, the SPAG5 knockout cell model was established by using clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system in MDA-MB-231 and BT549 TNBC cell lines. The knockout of SPAG5 was confirmed on both gene and protein levels using genomic PCR, DNA sequencing and western blotting. The functional loss of SPAG5 was determined by colony-formation assay. SPAG5-regulated doxorubicin- and docetaxel-resistance was assessed by MTT and apoptosis assays. The results indicated that all the SPAG5 knockout MDA-MB-231 and BT549 clones were biallelic, where one allele was replaced by the donor template, and the other allele had the same "T" insertion (indel) adjacent to the cutting sites of gRNAs at the exon 1 boundary, irrespective of the gRNAs and cell lines. The locus of indel interrupted the SPAG5 transcription by damaging the GT-AG mRNA processing rule. Deletion of SPAG5 decreased clonogenicity in both MDA-MB-231 and BT549 cells. SPAG5 was able to regulate the resistance and the drug-induced apoptosis of both doxorubicin and docetaxel. In conclusion, recombinant plasmid-based CRISPR-Cas9 technology can be used to delete the SPAG5 gene in the TNBC cell lines. SPAG5 has an important role in regulating cell proliferation and doxorubicin- and docetaxel-resistance in MDA-MB-231 and BT549 cells.
Keyphrases
- induced apoptosis
- cell cycle arrest
- crispr cas
- endoplasmic reticulum stress
- cell death
- genome editing
- pi k akt
- oxidative stress
- signaling pathway
- breast cancer cells
- cell proliferation
- locally advanced
- genome wide
- cancer therapy
- squamous cell carcinoma
- transcription factor
- stem cells
- emergency department
- single cell
- dna methylation
- high throughput
- radiation therapy
- young adults
- quantum dots
- south africa
- intellectual disability
- high resolution
- combination therapy
- binding protein
- chemotherapy induced
- genome wide association study