An Ascovirus Utilizes Different Types of Host Larval Regulated Cell Death Mechanisms To Produce and Release Vesicles.
Huan YuHua-Yan XiaoNi LiChang-Jin YangGuo-Hua HuangPublished in: Journal of virology (2022)
Ascoviruses are insect-specific viruses that are thought to utilize the cellular apoptotic processes of host larvae to produce numerous virion-containing vesicles. In this study, we monitored the in vivo infection processes of Heliothis virescens ascovirus 3h (HvAV-3h) to illustrate the regulated cell death (RCD) of host cells. Transmission electron microscopic observations did not reveal any morphological markers of apoptosis in the fat bodies or hemocytes of HvAV-3h-infected Helicoverpa armigera or Spodoptera exigua larvae. However, several hemocytes showed the morphological criteria for necrosis and/or pyroptosis. Further in vitro biochemical tests were performed to confirm the RCD type of host cells after infection with HvAV-3h. Different morphological characteristics were found between the early (prior to 24 hours post-infection, [hpi]) and later (48 to 120 hpi) stages in both HvAV-3h infected larval fat bodies and hemocytes. In the early stages, the virions could only be found in several adipohemocytes, and the fat bodies were cleaving their contained lipid inclusions into small lipid dots. In the later stage, both fat bodies and hemocytes were filled with numerous virions. According to the morphological characteristics of HvAV-3h infected larval fat bodies or hemocytes, the pathogenic characteristics and infection patterns of HvAV-3h in the host larvae were described, and the systematic pathogenic mode of ascovirus infection was refined in this study. This study details the complete infection process of ascoviruses, which provides insights into the relationship between a pathogenesis of an insect virus and the RCD of different host tissues at different stages of infection. IMPORTANCE Viruses and other pathogens can interrupt host cellular apoptosis to gain benefits, such as sufficient resources and a stable environment that enables them to complete their replication and assembly. It is unusual for viruses to code proteins with homology to caspases, which are commonly recognized as apoptosis regulators. Ascoviruses are insect viruses with special cytopathology, and they have been hypothesized to induce apoptosis in their host larvae via coding a caspase-like protein. This enables them to utilize the process of cellular apoptosis to facilitate vesicle formation and replication. However, our previous studies revealed different trends. The fat bodies and hemocytes of Heliothis virescens ascovirus 3h (HvAV-3h)-infected larvae did not show any morphological markers of apoptosis but did display necrosis and/or pyroptosis morphological characteristics. The pathogenic characteristics and infection patterns of HvAV-3h in the host larvae were described, which can help us understand the relationship between the pathogenesis of an insect virus and host RCD.
Keyphrases
- cell death
- cell cycle arrest
- aedes aegypti
- oxidative stress
- endoplasmic reticulum stress
- adipose tissue
- induced apoptosis
- drosophila melanogaster
- pi k akt
- fatty acid
- gene expression
- zika virus
- transcription factor
- cell proliferation
- dna methylation
- single cell
- ultrasound guided
- fluorescent probe
- antimicrobial resistance