Login / Signup

Plasmopara viticola effector PvCRN11 induces disease resistance to downy mildew in grapevine.

Qingqing FuJing YangKangzhuang ZhangKaixin YinGaoqing XiangXiao YinGuotian LiuYan Xu
Published in: The Plant journal : for cell and molecular biology (2023)
The downy mildew of grapevine (Vitis vinifera L.) is caused by Plasmopara viticola and is a major production problem in most grape-growing regions. The vast majority of effectors act as virulence factors and sabotage plant immunity. Here, we describe in detail one of the putative P. viticola Crinkler (CRN) effector genes, PvCRN11, which is highly transcribed during the infection stages in the downy mildew-susceptible grapevine V. vinifera cv. 'Pinot Noir' and V. vinifera cv. 'Thompson Seedless'. Cell death-inducing activity analyses reveal that PvCRN11 was able to induce spot cell death in the leaves of Nicotiana benthamiana but did not induce cell death in the leaves of the downy mildew-resistant V. riparia accession 'Beaumont' or of the downy mildew-susceptible 'Thompson Seedless'. Unexpectedly, stable expression of PvCRN11 inhibited the colonization of P. viticola in grapevine and Phytophthora capsici in Arabidopsis. Both transgenic grapevine and Arabidopsis constitutively expressing PvCRN11 promoted plant immunity. PvCRN11 is localized in the nucleus and cytoplasm, whereas PvCRN11-induced plant immunity is nucleus-independent. The purified protein PvCRN11 Opt initiated significant plant immunity extracellularly, leading to enhanced accumulations of reactive oxygen species, activation of MAPK and up-regulation of the defense-related genes PR1 and PR2. Furthermore, PvCRN11 Opt induces BAK1-dependent immunity in the apoplast, whereas PvCRN11 overexpression in intracellular induces BAK1-independent immunity. In conclusion, the PvCRN11 protein triggers resistance against P. viticola in grapevine, suggesting a potential for the use of PvCRN11 in grape production as a protectant against downy mildew.
Keyphrases