MicroRNA-29a mitigation of endoplasmic reticulum and autophagy aberrance counteracts in obstructive jaundice-induced fibrosis in mice.
Ying-Hsien HuangYa-Ling YangFu-Chen HuangMao-Meng TiaoYen-Cheng LinMing-Horng TsaiFeng-Sheng WangPublished in: Experimental biology and medicine (Maywood, N.J.) (2017)
Hepatic fibrosis was caused by a number of signaling pathways that damage liver integrity. We have previously shown that microRNA-29a (miR-29a) protects against liver fibrosis. Aberrant endoplasmic reticulum (ER) and autophagy function reportedly exaggerate hepatic disorders. The aim of this study was to characterize the biological influence of miR-29a on ER function in injured livers with bile duct ligation (BDL). We performed BDL on miR-29a transgenic mice (miR-29aTg) and wild-type mice to induce cholestatic liver injury. Rat T6 cells were transfected with miR-29a mimic and tunicamycin. Compared to the wild-type mice, the BDL deterioration of liver function in terms of total bilirubin, alanine transaminase, and aspartate transaminase activity in the miR-29aTg mice was significantly reduced. Affected livers in the miR-29aTg mice demonstrated a slight fibrotic matrix formation. miR-29a over-expression reduced the BDL disturbance of the expressions of inositol-requiring kinase 1alpha, double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase, spliced-X-box binding protein 1 (sXBP1), CCAAT/enhancer-binding protein homologous protein (CHOP), ULK, LC3BII, p62, and cleaved caspase-8, 9 and 3. In vitro, T6 cells exposed to tunicamycin by increasing abundances of CHOP, sXBP1, cleaved caspase-3, and LC3BII were diminished in the cell cultures transfected with the miR-29a mimic. On the other hand, we observed that miR-29a signaling protected liver tissues from BDL-mediated metabolic dysfunction and excessive fibrosis histopathology. This study provides new molecular insight into the miR-29a stabilization of ER integrity that slows the progression of cholestatic liver deterioration. Impact statement Long-term hepatic damage caused by hepatitis and cholestasis can accelerate fibrosis matrix over-production, which is a harmful process attributed to the dysregulation of a number of cellular and molecular events. The purpose of this study is to characterize the biological influence of miR-29a on endoplasmic reticulum (ER) function in bile duct ligation (BDL)-injured livers. To the best of our knowledge, this report is the first demonstration that miR-29a over-expression diminishes BDL provocation of ER stress (unfolded protein response, UPR) effector protein expression. This work also demonstrates that miR-29a decreased caspases protein expression in cholestatic livers, while an increase in miR-29a function reduced sXBP1 and CHOP expressions in T6 cells in mice. Analyses of this study highlight that controlling miR-29a signaling can serve as an innovative strategy in the future for microRNA regulation of ER homeostasis to combat cholestasis induction hepatic disorders.
Keyphrases
- cell proliferation
- long non coding rna
- endoplasmic reticulum
- long noncoding rna
- binding protein
- liver injury
- poor prognosis
- drug induced
- liver fibrosis
- oxidative stress
- wild type
- signaling pathway
- healthcare
- stem cells
- gene expression
- dna damage
- type diabetes
- protein kinase
- physical activity
- climate change
- adipose tissue
- metabolic syndrome
- skeletal muscle
- estrogen receptor
- insulin resistance
- pi k akt
- tyrosine kinase
- mass spectrometry
- dendritic cells
- idiopathic pulmonary fibrosis
- small molecule
- cell therapy
- induced apoptosis