Login / Signup

Chemically induced vesiculation as a platform for studying TMEM16F activity.

Tina W HanWenlei YeNeville P BethelMario ZubiaAndrew KimKathy H LiAlma L BurlingameMichael GrabeYuh Nung JanLily Y Jan
Published in: Proceedings of the National Academy of Sciences of the United States of America (2019)
Calcium-activated phospholipid scramblase mediates the energy-independent bidirectional translocation of lipids across the bilayer, leading to transient or, in the case of apoptotic scrambling, sustained collapse of membrane asymmetry. Cells lacking TMEM16F-dependent lipid scrambling activity are deficient in generation of extracellular vesicles (EVs) that shed from the plasma membrane in a Ca2+-dependent manner, namely microvesicles. We have adapted chemical induction of giant plasma membrane vesicles (GPMVs), which require both TMEM16F-dependent phospholipid scrambling and calcium influx, as a kinetic assay to investigate the mechanism of TMEM16F activity. Using the GPMV assay, we identify and characterize both inactivating and activating mutants that elucidate the mechanism for TMEM16F activation and facilitate further investigation of TMEM16F-mediated lipid translocation and its role in extracellular vesiculation.
Keyphrases
  • fatty acid
  • high throughput
  • induced apoptosis
  • cell death
  • high glucose
  • cell cycle arrest
  • diabetic rats