Crisis-Critical Intellectual Property: Findings From the COVID-19 Pandemic.
Frank TietzePratheeba VimalnathLeonidas AristodemouJenny MolloyPublished in: IEEE transactions on engineering management (2020)
A pandemic calls for large-scale action across national and international innovation systems in order to mobilize resources for developing and manufacturing crisis-critical products efficiently and in the huge quantities needed. Nowadays, these products also include a wide range of digital innovations. Given that many responses to the pandemic are technology driven, stakeholders involved in the development and manufacturing of crisis-critical products are likely to face intellectual property (IP)-related challenges. To (governmental) decision makers, IP challenges might not appear to be of paramount urgency compared to the many undoubtedly huge operational challenges to deploy critical resources. However, if IP challenges are considered too late, they may cause delays to urgently mobilize resources effectively. Innovation stakeholders could then be reluctant to fully engage in the development and manufacturing of crisis-critical products. This article adopts an IP and innovation perspective to learn from the currently unfolding COVID-19 pandemic using secondary data, including patent data, synthesized with an IP roadmap. We focus on technical aspects related to research, development, and upscaling of capacity to manufacture crisis-critical products in the huge volumes suddenly in demand. In this article, we offer a set of contributions. We provide a structure, framework, and language for those concerned with steering clear of IP challenges to avoid delays in fighting a pandemic. We provide a reasoning why IP needs to be considered earlier rather than too late in a global health crisis. Major stakeholders we identify include 1) governments; 2) manufacturing firms owning existing crisis-critical IP (incumbents in crisis-critical sectors); 3) manufacturing firms normally not producing crisis-critical products suddenly rushing into crisis-critical sectors to support the manufacturing of crisis-critical products in the quantities that far exceed incumbents' production capacities; and 4) voluntary grassroot initiatives that form during a pandemic, often by highly skilled engineers and scientists in order to contribute to the development and dissemination of crisis-critical products. For these major stakeholders, we draw up three scenarios, from which we identify associated IP challenges they face related to the development and manufacturing of technologies and products for 1) prevention (of spread); 2) diagnosis of infected patients; and 3) the development of treatments. This article provides a terminology to help policy and other decision makers to discuss IP considerations during pandemics. We propose a framework that visualizes changing industrial organizations and IP-associated challenges during a pandemic and derive initial principles to guide innovation and IP policy making during a pandemic. Obviously, our findings result only from observations of one ongoing pandemic and thus need to be verified further and interpreted with care.