Whole-brain neural substrates of behavioral variability in the larval zebrafish.
Jason ManleyAlipasha VaziriPublished in: bioRxiv : the preprint server for biology (2024)
Animals engaged in naturalistic behavior can exhibit a large degree of behavioral variability even under sensory invariant conditions. Such behavioral variability can include not only variations of the same behavior, but also variability across qualitatively different behaviors driven by divergent cognitive states, such as fight-or-flight decisions. However, the neural circuit mechanisms that generate such divergent behaviors across trials are not well understood. To investigate this question, here we studied the visual-evoked responses of larval zebrafish to moving objects of various sizes, which we found exhibited highly variable and divergent responses across repetitions of the same stimulus. Given that the neuronal circuits underlying such behaviors span sensory, motor, and other brain areas, we built a novel Fourier light field microscope which enables high-resolution, whole-brain imaging of larval zebrafish during behavior. This enabled us to screen for neural loci which exhibited activity patterns correlated with behavioral variability. We found that despite the highly variable activity of single neurons, visual stimuli were robustly encoded at the population level, and the visual-encoding dimensions of neural activity did not explain behavioral variability. This robustness despite apparent single neuron variability was due to the multi-dimensional geometry of the neuronal population dynamics: almost all neural dimensions that were variable across individual trials, i.e. the "noise" modes, were orthogonal to those encoding for sensory information. Investigating this neuronal variability further, we identified two sparsely-distributed, brain-wide neuronal populations whose pre-motor activity predicted whether the larva would respond to a stimulus and, if so, which direction it would turn on a single-trial level. These populations predicted single-trial behavior seconds before stimulus onset, indicating they encoded time-varying internal modulating behavior, perhaps organizing behavior over longer timescales or enabling flexible behavior routines dependent on the animal's internal state. Our results provide the first whole-brain confirmation that sensory, motor, and internal variables are encoded in a highly mixed fashion throughout the brain and demonstrate that de-mixing each of these components at the neuronal population level is critical to understanding the mechanisms underlying the brain's remarkable flexibility and robustness.
Keyphrases
- cerebral ischemia
- resting state
- white matter
- high resolution
- functional connectivity
- clinical trial
- healthcare
- gene expression
- study protocol
- blood brain barrier
- magnetic resonance
- spinal cord
- air pollution
- randomized controlled trial
- computed tomography
- brain injury
- phase ii
- signaling pathway
- social media
- high throughput
- dna methylation
- zika virus
- genome wide
- sensitive detection
- aedes aegypti
- living cells