Dietary Annatto-Extracted Tocotrienol Reduces Inflammation and Oxidative Stress, and Improves Macronutrient Metabolism in Obese Mice: A Metabolic Profiling Study.
Chwan-Li ShenSivapriya RamamoorthyGurvinder KaurJannette M DufourRui WangHuanbiao MoBruce A WatkinsPublished in: Nutrients (2021)
Obesity and its related complications are a world-wide health problem. Dietary tocotrienols (TT) have been shown to improve obesity-associated metabolic disorders, such as hypercholesterolemia, hyperglycemia, and gut dysbiosis. This study examined the hypothesis that the antioxidant capacity of TT alters metabolites of oxidative stress and improves systemic metabolism. C57BL/6J mice were fed either a high-fat diet (HFD control) or HFD supplemented with 800 mg annatto-extracted TT/kg (HFD+TT800) for 14 weeks. Sera from obese mice were examined by non-targeted metabolite analysis using UHPLC/MS. Compared to the HFD group, the HFD+TT800 group had higher levels of serum metabolites, essential amino acids (lysine and methionine), sphingomyelins, phosphatidylcholine, lysophospholipids, and vitamins (pantothenate, pyridoxamine, pyridoxal, and retinol). TT-treated mice had lowered levels of serum metabolites, dicarboxylic fatty acids, and inflammatory/oxidative stress markers (trimethylamine N-oxide, kynurenate, 12,13-DiHOME, and 13-HODE + 9-HODE) compared to the control. The results suggest that TT supplementation lowered inflammation and oxidative stress (oxidized glutathione and GSH/GSSH) and improved macronutrient metabolism (carbohydrates) in obese mice. Thus, TT actions on metabolites were beneficial in reducing obesity-associated hypercholesterolemia/hyperglycemia. The effects of a non-toxic dose of TT in mice support the potential for clinical applications in obesity and metabolic disease.
Keyphrases
- high fat diet
- oxidative stress
- insulin resistance
- high fat diet induced
- ms ms
- adipose tissue
- diabetic rats
- metabolic syndrome
- skeletal muscle
- weight loss
- dna damage
- type diabetes
- ischemia reperfusion injury
- induced apoptosis
- amino acid
- weight gain
- multiple sclerosis
- mental health
- risk factors
- fatty acid
- public health
- newly diagnosed
- preterm birth
- human health
- mass spectrometry
- endoplasmic reticulum stress
- cardiovascular events
- single cell