Biomarkers of DNA Oxidation Products: Links to Exposure and Disease in Public Health Studies.
Peter MøllerMartin RoursgaardPublished in: Chemical research in toxicology (2021)
Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.
Keyphrases
- air pollution
- circulating tumor
- public health
- cell free
- high throughput
- single molecule
- oxidative stress
- healthcare
- particulate matter
- mental health
- nucleic acid
- lung function
- gene expression
- simultaneous determination
- human health
- circulating tumor cells
- dna damage
- single cell
- mass spectrometry
- signaling pathway
- induced apoptosis
- global health
- endoplasmic reticulum stress
- heat shock protein
- liquid chromatography