Login / Signup

Systematic Evaluation of Biophysical and Functional Characteristics of Selenomethylene-Locked Nucleic Acid-Mediated Inhibition of miR-21.

Smita NaharAmrita SinghKunihiko MorihiroYoshihiro MoaiTetsuya KodamaSatoshi ObikaSouvik Maiti
Published in: Biochemistry (2016)
miRNAs constitute an important layer of gene regulation mediated by sequence-specific targeting of mRNAs. Aberrant expression of miRNAs contributes to a host of pathological states. Promoting cancer, miR-21 is upregulated in variety of cancers and promotes tumor progresion by suppressing a network of tumor suppressor genes. Here we describe a novel class of bicyclic RNA analogues, selenomethylene-locked nucleic acid (SeLNA), that display high affinity, improved metabolic stability, and increased potency for miR-21 inhibition. The thermal stability (Tm) for duplexes was increased significantly with incorporation of SeLNA monomers as compared to that of the unmodified DNA-RNA hybrid. A comprehensive thermodynamic profile obtained by isothermal titration calorimetry revealed a favorable increase in the enthalpy of hybridization for SeLNA containing DNA and target RNA heteroduplexes. SeLNA modifications displayed remarkable binding affinity for miR-21 target RNA with a Ka of ≤1.05 × 108 M-1. We also observed enhanced serum stability for SeLNA-RNA duplexes with a half-life of ≤36 h. These in vitro results were well correlated with the antisense activity in cancer cells imparting up to ∼91% inhibition of miR-21. The functional impact of SeLNA modifications on miR-21 inhibition was further gauged by investigating the migration and invasion characterisitics of cancer cells, which were drastically reduced to ∼49 and ∼55%, respectively, with SeLNA having four such modifications. Our findings demonstrate SeLNA as a promising candidate for therapeutics for disease-associated miRNAs.
Keyphrases