MAPK5 and MAPK10 overexpression influences strawberry fruit ripening, antioxidant capacity and resistance to Botrytis cinerea.
Yunting ZhangYu LongYiting LiuMin YangLiangxin WangXiaoyang LiuYong ZhangQing ChenMengyao LiYuanxiu LinHaoru TangYa LuoPublished in: Planta (2021)
FaMAPK5 and FaMAPK10 genes were involved in ABA-mediated strawberry fruit ripening and could enhance the antioxidant capacity by increasing non-enzymatic components and enzymatic antioxidants. Mitogen-activated protein kinases (MAPKs) are the key proteins involved in plant stress response by activating an antioxidant defense system, which cooperates with plant hormones. However, the involvement of MAPKs in the regulation of strawberry fruit ripening and resistance is unclear. In this study, two genes, FaMAPK5 and FaMAPK10, were isolated, and their expression pattern and function analysis were conducted. The results showed FaMAPK5 and FaMAPK10 were expressed in all tested tissue/organ types and reached the highest expression level at the white stage during strawberry fruit development and ripening. Transient overexpression of FaMAPK5 and FaMAPK10 increased the fruit anthocyanin, abscisic acid (ABA), total sugar, and glucose contents. ABA and especially hydrogen peroxide (H2O2) treatment induced the production of large amounts of H2O2 and noticeably increased the expression levels of FaMAPK5 and FaMAPK10 in strawberry fruit, while the reduced glutathione (GSH) had the opposite effect. The level of total phenol and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) significantly increased in FaMAPK5 overexpression fruit, and increased activities of SOD and CAT were observed in FaMAPK10 overexpression fruit. In addition, Botrytis cinerea treatment showed that overexpression of FaMAPK5 conferred retarded disease symptom development and enhanced fruit disease resistance. Our research revealed that FaMAPK5 and FaMAPK10 might participate in ABA-mediated H2O2 signaling in regulating strawberry fruit ripening and resistance.