HDAC Inhibitors Enhance Efficacy of the Oncolytic Adenoviruses Ad∆∆ and Ad-3∆-A20T in Pancreatic and Triple-Negative Breast Cancer Models.
María Del Carmen Rodríguez RodríguezInés García RodríguezCallum NattressAhad QureshiGunnel HalldénPublished in: Viruses (2022)
The prognosis for triple-negative breast cancer (TNBC) and pancreatic ductal adenocarcinoma (PDAC) is dismal. TNBC and PDAC are highly aggressive cancers with few treatment options and a potential for rapid resistance to standard-of-care chemotherapeutics. Oncolytic adenoviruses (OAds) represent a promising tumour-selective strategy that can overcome treatment resistance and eliminate cancer cells by lysis and host immune activation. We demonstrate that histone deacetylase inhibitors (HDACi) potently enhanced the cancer-cell killing of our OAds, Ad∆∆ and Ad-3∆-A20T in TNBC and PDAC preclinical models. In the TNBC cell lines MDA-MB-436, SUM159 and CAL51, cell killing, viral uptake and replication were increased when treated with sublethal doses of the Class-I-selective HDACis Scriptaid, Romidepsin and MS-275. The pan-HDACi, TSA efficiently improved OAd efficacy, both in vitro and in SUM159 xenograft models in vivo. Cell killing and Ad∆∆ replication was also significantly increased in five PDAC cell lines when pre-treated with TSA. Efficacy was dependent on treatment time and dose, and on the specific genetic alterations in each cell line. Expression of the cancer specific αvß6-integrin supported higher viral uptake of the integrin-retargeted Ad-3∆-A20T in combination with Scriptaid. In conclusion, we demonstrate that inhibition of specific HDACs is a potential means to enhance OAd activity, supporting clinical translation.
Keyphrases
- histone deacetylase
- cell therapy
- single cell
- sars cov
- healthcare
- poor prognosis
- multiple sclerosis
- palliative care
- mass spectrometry
- squamous cell carcinoma
- young adults
- long non coding rna
- genome wide
- signaling pathway
- ms ms
- breast cancer cells
- gene expression
- squamous cell
- replacement therapy
- newly diagnosed
- cell death
- cell adhesion
- climate change
- binding protein