Login / Signup

Exposure of Helicoverpa armigera Larvae to Plant Volatile Organic Compounds Induces Cytochrome P450 Monooxygenases and Enhances Larval Tolerance to the Insecticide Methomyl.

Choufei WuChaohui DingShi ChenXiaoying WuLiqin ZhangYuanyuan SongWu LiRen-Sen Zeng
Published in: Insects (2021)
Plants release an array of volatile chemicals into the air to communicate with other organisms in the environment. Insect attack triggers emission of herbivore-induced plant volatiles (HIPVs). How insect herbivores use these odors to plan their detoxification systems is vital for insect adaptation to environmental xenobiotics. Here we show that the larvae of Helicoverpa armigera (Hübner), a broadly polyphagous lepidopteran herbivore, have the capacity to use plant volatiles as cues to upregulate multiple detoxification systems, including cytochrome P450 monooxygenases (P450s), for detoxification of insecticides. Olfactory exposure of the fifth instars to two terpene volatiles limonene and nerolidol, and two green-leaf volatiles 2-heptanone and cis-3-hexenyl acetate significantly reduced larval susceptibility to the insecticide methomyl. However, larval pretreatment with piperonyl butoxide (PBO), a known P450 inhibitor, neutralized the effects of volatile exposure. Furthermore, larval exposure to the four plant volatiles enhanced activities of P450 enzymes in midguts and fatbodies, and upregulated expression of CYP6B2, CYP6B6 and CYP6B7, P450s involved in detoxification of the insecticide. Larval exposure to 2-heptanone and limonene volatiles also enhanced activities of glutathione-s-transferase and carboxylesterase. Our findings suggest that olfactory exposure to HIPVs enhances larval insecticide tolerance via induction of detoxification P450s.
Keyphrases