Login / Signup

Terahertz Spectroscopy: An Investigation of the Structural Dynamics of Freeze-Dried Poly Lactic-co-glycolic Acid Microspheres.

Talia A ShmoolPhilippa J HooperGabriele S Kaminski SchierleChristopher F Van Der WalleJ Axel Zeitler
Published in: Pharmaceutics (2019)
Biodegradable poly lactic-co-glycolic acid (PLGA) microspheres can be used to encapsulate peptide and offer a promising drug-delivery vehicle. In this work we investigate the dynamics of PLGA microspheres prepared by freeze-drying and the molecular mobility at lower temperatures leading to the glass transition temperature, using temperature-variable terahertz time-domain spectroscopy (THz-TDS) experiments. The microspheres were prepared using a water-in-oil-in-water (w/o/w) double-emulsion technique and subsequent freeze-drying of the samples. Physical characterization was performed by morphology measurements, scanning electron microscopy, and helium pycnometry. The THz-TDS data show two distinct transition processes, T g , β in the range of 167-219 K, associated with local motions, and T g , α in the range of 313-330 K, associated with large-scale motions, for the microspheres examined. Using Fourier transform infrared spectroscopy measurements in the mid-infrared, we were able to characterize the interactions between a model polypeptide, exendin-4, and the PLGA copolymer. We observe a relationship between the experimentally determined T g , β and T g , α and free volume and microsphere dynamics.
Keyphrases
  • drug delivery
  • electron microscopy
  • drug release
  • molecularly imprinted
  • high resolution
  • cancer therapy
  • single molecule
  • mental health
  • physical activity
  • solid state
  • fatty acid
  • deep learning
  • solid phase extraction