Login / Signup

Glucuronide-Linked Antibody-Tubulysin Conjugates Display Activity in MDR+ and Heterogeneous Tumor Models.

Patrick J BurkeJoseph Z HamiltonThomas A PiresHolden W H LaiChristopher I LeiskeKim K EmmertonAndrew B WaightPeter D SenterRobert P LyonScott C Jeffrey
Published in: Molecular cancer therapeutics (2018)
Although antibody-drug conjugates (ADCs) find increasing applications in cancer treatment, de novo or treatment-emergent resistance mechanisms may impair clinical benefit. Two resistance mechanisms that emerge under prolonged exposure include upregulation of transporter proteins that confer multidrug resistance (MDR+) and loss of cognate antigen expression. New technologies that circumvent these resistance mechanisms may serve to extend the utility of next-generation ADCs. Recently, we developed the quaternary ammonium linker system to expand the scope of conjugatable payloads to include tertiary amines and applied the linker to tubulysins, a highly potent class of tubulin binders that maintain activity in MDR+ cell lines. In this work, tubulysin M, which contains an unstable acetate susceptible to enzymatic hydrolysis, and two stabilized tubulysin analogues were prepared as quaternary ammonium-linked glucuronide-linkers and assessed as ADC payloads in preclinical models. The conjugates were potent across a panel of cancer cell lines and active in tumor xenografts, including those displaying the MDR+ phenotype. The ADCs also demonstrated potent bystander activity in a coculture model comprised of a mixture of antigen-positive and -negative cell lines, and in an antigen-heterogeneous tumor model. Thus, the glucuronide-tubulysin drug-linkers represent a promising ADC payload class, combining conjugate potency in the presence of the MDR+ phenotype and robust activity in models of tumor heterogeneity in a structure-dependent manner. Mol Cancer Ther; 17(8); 1752-60. ©2018 AACR.
Keyphrases